skill
Struck

Creating an Instance/Object

Textbook

Creating an Instance/Object

Overview

To review - a class is a blueprint of an object. An instance is the implementation of that blueprint to create
an actual object in our program.

For example, let's say we used the same blueprints to build five different houses. Each of these houses has
different owners, and they were able to customize the materials in each of their houses. Even though they're
built from the same blueprints, each house still has unique attributes.

In this example, each of the five different houses is an instance of the house class . The blueprints are the
exact same, but each instance has some different attributes.

Create an Object/Instance

Now that we have created a pog class, we're now able to create an instance of that class, or in other
words, we are ready to create an object!

Let's create an instance of a dog named Jasmine:

https://curriculum.skillstruck.com/

class Dog:

def __init_ (self, name, age, gender):
self.name = name
self.age = age
self.gender = gender

pet = Dog('"Jasmine", "15", '"Female")

print(pet)

Try it!

As you can see, we created a new variable named pet and set that equal to a new instance of the Dpog
class. The variable named pet is an object that represents Jasmine in our program. The pet object has
the attributes of Jasmine as the name, 15 as the age, and Female as the gender.

To be very clear: The object named pet looks like this.
pet = Dog("Jasmine", "15", "Female")
This object is built using the class named pog .

Accessing Attributes of an Object

As you can see from the above example, when you print pet , it returns a reference to that object. It
doesn't return the attributes of your object. Let's learn how to access the specific attributes of your object
named pet .

This is done by calling the object name and the attribute like this:

pet.attribute

class Dog:
def __init_ (self, name, age, gender):
self.name = name
self.age = age
self.gender = gender

pet = Dog('"Jasmine", "15", '"Female")

print(pet.name)

Try it!

We can also concatenate different parts of the object like this.

class Dog:

def __init_ (self, name, age, gender):
self.name = name
self.age = age
self.gender = gender

pet = Dog("Jasmine", "15", "Female")

print("Pet 1: " + pet.name + " " + pet.age + " " + pet.gender)

Try it!

Another Instance of the Class named Dog

Let's create another pet, a young dog named George . We will use the class named bpog to create another
object, or another instance of the class.

class Dog:

def __init_ (self, name, age, gender):
self.name = name
self.age = age
self.gender = gender

petl = Dog("Jasmine", "15", "Female")

pet2 = Dog("George", "3", "Male")

print("Pet 1: " + petl.name + " " + petl.age + " " + petl.gender)
print("Pet 2: " + pet2.name + " " + pet2.age + " " + pet2.gender)

Try it!

Now, if we want to access the information about each of these objects, it's very easy. See the sample code
below, along with what that code would print out:

class Dog:

def __init_ (self, name, age, gender):
self.name = name
self.age = age
self.gender = gender

petl
pet2

Dog("Jasmine", "15", "Female")
Dog(llGeorgell’ II3II’ IlMa'LeII)

print(petl.name)
print(petl.gender)
print(petl.age)
print(pet2.gender)
print(pet2.name)

Try it!

Create your own Instance

Following the steps above, add onto the pet class you made in the previous project. Create a new
instance of a pet , give it d name ond a species , and print it out.

Checkpoint

Create an Instance

Create an instance of a class!

1. Create a class named Hat .

2. Inside the class, include three attributes: kind , color , material
3. Make sure the attributes are in that order.

4. Create an instance of the class named Hat . Name the instance myoObject .

Requirements:

« Create a class named Hat

« Inside the class named Hat , create the __init_ () section

« Reference the kind attribute to the class name using self .

« Reference the color attribute to the class name using self .

« Reference the material attribute to the class name using self .

« Create an object named myobject by using the Hat template.

Questions (10)

MULTIPLE CHOICE
1. What is the following code an example of?

first = Animal("Furry”, "Brown", "4 legs")

Choose the correct answer:

A. An object
B. Aclass

C. Alist

D. Aloop

MULTIPLE CHOICE
2. What is another way of saying "create an instance of a class?"

Choose the correct answer:

A. Create an object
B. Create a template or blueprint
C. Create a list

D. Create a variable

MULTIPLE CHOICE
3. Which of the following is most similar to a blueprint?

Choose the correct answer:

A. class
B. object
C. instance

D. variable

4, Which of the following is the way to access the attribute "salad” in the object named myObject?

MULTIPLE CHOICE

class Dinner: def __init__(self, main, side, drink): self.main = main self.side = side selfdrink = drink myObject =
Dinner("pasta”, "salad", "juice”) print(myObject)

Choose the correct answer:

A. myObject.side
B. myObject.salad
C. Dinnerside

D. Dinner.salad

MULTIPLE CHOICE
5. How many objects can be made with one class?

Choose the correct answer:

A. One
B. As many objects as there are attributes in the class.
C. As many as you want.

D. 4

MULTIPLE CHOICE
6. Which term is used to describe an actual object created from a class blueprint?

Choose the correct answer:

A. Blueprint
B. Implementation
C. Instance

D. Reference

MULTIPLE CHOICE
7. How do you access the attributes of an object named p1?

Choose the correct answer:

A. plattribute
B. attribute.pl
C. pilattribute]

D. pl->attribute

MULTIPLE CHOICE
8. What does the following code print?

class Person: def __init__(self, name, age, gender): self.name = name self.age = age self.gender = gender pl =
Person("George", "67", "Male") print("Person 1: " + pl.name + " " + plage + " " + pl.gender)

Choose the correct answer:

A. Person 1: George 67 Male
B. Person 1: 67 Male George
C. George 67 Male

D. Person 1: "George 67 Male"

MULTIPLE CHOICE
9. What is the purpose of creating multiple instances of a class?

Choose the correct answer:

A. To create different classes
B. To customize attributes for each instance
C. To share attributes among instances

D. To make the code longer

DEBUG CODE

10. Debug the following code:

Code to Debug:

1 class Person:

2

3 def __init_ (self, name, age, gender):
4 self.name = name

5 self.age = age

6 self.gender = gender
7

8

9

10

pl = person("Jasmine", "15", "Female")

print(pl.name)

Challenges (3)

1. A Fruit Festival

You are building an app for a fruit arrangement company. They want to have a template that would be easy to create
different bouquets.

1. Create 4 different objects using the same class!

2. Use the following class named rruit to create your objects.
3. Print the kind attribute for each of your objects.

Example Output:

class Fruit: def __init__(self, shape, kind, size): self.shape = shape self kind = kind self size = size

Requirements:

« Create 4 objects using the class named Fruit .

« Print the kind attribute for each of your objects.

2. Pet Store

Create a class named pet with at least 3 attributes

Use the class named pet to create at least 3 instances of the class.

Requirements:

« Create a class named rpet
+ Inside the class named Ppet , create the _ init_ () section
+ Reference all 3 attributes to the class name using self .

« Create 3 instances of the object named pet

3. Vacation Planner

1. Create a class named vacation with at least 3 attributes: location , activity , food (in that order)
2. Use the class named vacation to create at least 3 instances of the class.

3. Use an attribute from each instance in a concatenated sentence.

Requirements:

« Create a class named vacation

« Inside the class named Vacation , create the __init () section with the designated attributes in the correct
order.

+ Reference the 1location attribute to the class name using self .
» Reference the activity attribute to the class name using self .
» Reference the food attribute to the class name using self .

« Create three objects by using the Vacation template.

« Use an attribute from each instance in 3 separate concatenated sentences.

Answer Keys & Solutions

Checkpoint Solutions

Create an Instance

1 class Hat:
2
3 def __init_ (self, kind, color, material):
4 self.kind = kind
5 self.color = color
6 self.material = material
7
8 myObject = Hat("warm fuzzy", "pink", "fleece")
9
10 print(myObject)
Questions

1. What is the following code an example of?

Correct Answer:

MULTIPLE CHOICE

L

A. An object v Correct
B. Aclass X Incorrect
C. Alist X Incorrect
D. Aloop X Incorrect

Explanation:

This bit of code is using a class named Animal to create something.

2. What is another way of saying “create an instance of a class?"

Correct Answer:

MULTIPLE CHOICE

L

A. Create an object v Correct
B. Create a template or blueprint X Incorrect
C. Create alist X Incorrect

D. Create a variable X Incorrect

Explanation:

This is how to use object oriented programming.

MULTIPLE CHOICE
3. Which of the following is most similar to a blueprint?

Correct Answer:

A. class v Correct
” B. object X Incorrect
[C. instance X Incorrect

D. variable X Incorrect

Explanation:

This helps to create objects.

4. Which of the following is the way to access the attribute "salad" in the
object named myObiject?

MULTIPLE CHOICE

Correct Answer:

A. myObject.side v Correct
B. myObject.salad X Incorrect
C. Dinnerside X Incorrect
D. Dinner.salad X Incorrect

Explanation:
10

. . MULTIPLE CHOICE
5. How many objects can be made with one class?

Correct Answer:

A. One X Incorrect

B. As many objects as there are attributes in the class. X Incorrect
C. As many as you want. v Correct
D. 4 X Incorrect

Explanation:

Remember that a class is like a blueprint for a house.

6. Which term is used to describe an actual object created from a class
blueprint?

MULTIPLE CHOICE

Correct Answer:

A. Blueprint X Incorrect
B. Implementation X Incorrect
C. Instance v Correct
D. Reference X Incorrect

Explanation:

In programming, an object is called an instance of the class

MULTIPLE CHOICE
7. How do you access the attributes of an object named p1?

Correct Answer:

A. plattribute v Correct
B. attribute.pl X Incorrect
C. pllattribute] X Incorrect
D. pl->attribute X Incorrect

Explanation:

The object name comes first.

8. What does the following code print?

Correct Answer:

MULTIPLE CHOICE

p

L

L

A. Person 1: George 67 Male v Correct
B. Person 1: 67 Male George X Incorrect
C. George 67 Male X Incorrect
D. Person 1: "George 67 Male" X Incorrect

Explanation:

The name comes first, then the age, then the gender

9. What is the purpose of creating multiple instances of a class?

Correct Answer:

MULTIPLE CHOICE

-

L

A. To create different classes X Incorrect
B. To customize attributes for each instance v Correct
C. To share attributes among instances X Incorrect
D. To make the code longer X Incorrect
Explanation:
Each instance has specific attributes
DEBUG CODE

10. Debug the following code:

Incorrect Code:

class Person:
def __init_ (self, name, age, gender):
self.name = name

1

2

3

4

5 self.age = age
6 self.gender = gender
7

8

9

pl = person("Jasmine", "15", "Female")

10 print(pl.name)

Correct Solution:

1 class Person:

2

3 def __init_ (self, name, age, gender):
4 self.name = name

5 self.age = age

6 self.gender = gender
7

8

9

10

pl = Person("Jasmine", "15", "Female")

print(pl.name)

Explanation:

There's a word that needs to be capitalized

Challenges

1. A Fruit Festival
Solution:

class Fruit:

1

2

3 def __init_ (self, shape, kind, size):
4 self.shape = shape

5 self.kind kind
6

7

8

9

self.size = size

first = Fruit("flower", "apple", '"small")
10 second = Fruit("bird", "watermelon", "tall")
11 third = Fruit("pattern", "avocado", "small")
12 fourth = Fruit("bird", "orange", "big")
13
14 print(first.kind)
15 print(second.kind)
16 print(third.kind)
17 print(fourth.kind)

2. Pet Store

Solution:

class Pet:

1

2

3 def __init_ (self, name, kind, age):
4 self.name = name

5 self.kind = kind

6 self.age = age

7

8

9 first = Pet("Speedy", "lizard", "2")
10 second = Pet("Spot", "dog", "4")

11 third = Pet("Ferdinand", "goat", "5")

3. Vacation Planner

Solution:

class Vacation:

1

2

3 def __init_ (self, location, activity, food):
4 self.location = location

5 self.activity = activity

6 self.food = food

7

8

9

first = Vacation("Beach", "snorkeling", "smoothies™")
10 second = Vacation("Mountain", "rock climbing", "dutch oven")
11 third = Vacation("Theme Park", "roller coaster", "pizza")
12
13 print("I'm excited to go visit the " + first.location)
14 print("I would love to do some " + second.activity)
15 print("I love to eat " + third.food)

