skill
Struck

Super Classes

Textbook

Super Classes

We can even create a class to put other classes into! This is called a super class. In this case, the children
class (the classes inside the big class) inherit the attributes or behaviors from the parent class.

Let's explore an example of some simple shape equations to help us understand superclasses.

1 class Rectangle:

2 def __init_ (self, width, height):
3 self.width = width

4 self.height = height

5

6 def area(self):

7 return self.width x self.height
8

9 def perimeter(self):

10 return 2 x self.width + 2 x self.height
11

12 class Square:

13 def __init_ (self, width, height):

14 self.width = width

https://curriculum.skillstruck.com/

self.height = height

def area(self):
return self.width * self.height

def perimeter(self):
return 2 x self.width + 2 x self.height

myRectangle = Rectangle(3, 10)
myRectangle.area()

mySquare = Square(5, 5)
mySquare.area()

We have created two classes for finding the area and perimeter of a rectangle and a square. You'll notice
that there is a lot of repeated code. This is because finding the area and perimeter of a square is a lot like
finding the area a perimeter of a rectangle.

Wouldn't it be a good idea to just use the same few lines of code for both places?

This is a good situation to use inheritance. Inheritance allows a class to use properties of a different class.
Super Class Inheritance

Now let's use super() to condense how much code we need to write.

Notice that the class named square has parentheses with the class name Rectangle inside. This allows
this class to access the Rectangle class.

class Rectangle:
def __init_ (self, width, height):
self.width = width
self.height = height

def area(self):
return self.width * self.height

def perimeter(self):
return 2 x self.width + 2 x self.height

class Square(Rectangle):
def __init_ (self, width, height):
super().__init_ (width, height)

mySquare = Square(5, 5)
mySquare.area()

Try it!

This will print out 25 .

Now, inside the class named square , we still have the __init () function which is always needed. But
below that, we used super(). init__(width, height) after it. This line of code gives the class named
Square daccess to the functions inside the class named Rectangle .

So now, at the bottom, we could create an object named mySquare by using the square class. And we
can also use the area() function from the class named Rectangle .

¢« The class named Rectangle is the superclass.

e« The class named square is the subclass.

This is an example of inheritance. The square class inherited the area() function from the Rectangle
class.

Multiple Inheritance

Classes can actually inherit content from multiple other classes! Let's say we wanted to find the area of a
house shape. This house shape is a square and a triangle put together. The triangle is the same height as
the square.

Let's say we have already created the code to find the area of the square and the area of the triangle.
Now you need to find the area of this shape. It would be efficient to simply use the code you already made
to find the area of the two separate shapes and combine them! This can be done with multiple inheritance.

1 class Square:

2 def __init_ (self, width, height):

3 self.width = width

4 self.height = height

5

6 def areaSquare(self):

7 return self.width * self.height

8

9 def perimeter(self):

10 return 2 x self.width + 2 * self.height
11

12 class Triangle():

def __init_ (self, width, height):
self.width = width
self.height = height

def areaTriangle(self):
return self.width x self.height / 2

class House(Square, Triangle):
def __init_ (self, width, height):
super().__init_ (width, height)

def areaHouse(self):
areaBottom = super().areaSquare()
areaTop = super().areaTriangle()
return areaBottom + areaTop

myHouse = House(5, 5)
myHouse.areaHouse()

Try it!

So let's unpack this code a bit.
1. The class named House pulls information from the class named square and the class named

Triangle , As can be found in the parentheses after House .

2. Inside the class named house, we have the normal _ init () function with the parameters that
match the parameters in the previous classes.

3. We also have the code to access other classes.
4. super().__init__ (width, height)

5. The class named House also has another method named areaHouse . This method has some
variables naomed areaBottom and areaTop . These variables are set equal to function calls in the
other classes. These other functions are named areaSquare() and areaTriangle(). These values
are then added together and returned.

6. Towards the bottom we create a new object called myHouse and set it equal to the class named
House With specific parameters.

7. The last line of code then asks for the specific function named areadouse () inside the class
myHouse to run. which returns the area of the house shape.

Checkpoint

Super Classes

Practice creating a super class! First we will make 2 classes, and one will use a method from the other. These classes will help
calculate free time once homework time has been taken away.

1. Create a class named Time .

. Inside the class named Time , create the __init_ () function with three parameters: self , free , and homework .
Make sure to assign these values to self. These values will represent free time and time spent on homework.

. Inside the class named Time , create a method named evening() . Inside the method named evening() , create a
return statement that returns self.free - self.homework . Remember to include the self parameter in the method.

. Create another class named student . Make sure to include parentheses and include the class named Time inside. This
makes the class named Time a super class. Now we can use methods from the class naomed Time .

. Inside the class named student , create the _ init_ () function with three parameters: self , free , and
homework . Now we don't need to assign these to self because they are assigned to a different class.

.Inside the __init () function, include super()._ init (free, homework) . This means that we want to use
methods from the designated super class.

7. After the two classes have been made, create an object named wednesday by using the class named student and the
parameters (4, 3) .
8. Finally call the method named evening on the object named wednesday .
Requirements:
« Create a class named Time.
« Inside the class named Time, create the __init__() function with three parameters: self, free, and homework. Make sure to
assign these values to self. These values will represent free time and time spent on homework.
« Inside the class named Time, create a method named evening(). Inside the method named evening(), create a return
statement that returns self.free - self.homework. Remember to include the self parameter in the method.
« Create another class named Student. Make sure to include parentheses and include the class named Time inside. This
makes the class named Time a super class. Now we can use methods from the class named Time.
- Inside the class named Student, create the __init__() function with three parameters: self, free, and homework. Now we
don't need to assign these to self because they are assigned to a different class.
« Inside the __init__() function, include super().__init__(free, homework). This means that we want to use methods from the
designated super class.
« After the two classes have been made, create an object named wednesday by using the class named Student and the
parameters (4, 3).
« Finally call the method named evening on the object named wednesday.
Questions (3)

MULTIPLE CHOICE
1. Which is the superclass in the following code?

class Rectangle: def __init__(self, width, height): selfwidth = width self.height = height def area(self): return selfwidth *
selfheight def perimeter(self): return 2 * selfwidth + 2 * self.height class Square(Rectangle): def __init__(self, width, height):
super().__init__(width, height) mySquare = Square(5, 5) mySquare.areal)

Choose the correct answer:

A. Square

B. Rectangle
C. areq)

D. perimeter()

E. mySquare

2. What is inheritance?

Choose the correct answer:

A. Inheritance allows a class to use properties of a different class.
B. Inheritance is when you don't need to make an object
C. Inheritance allows a method to use an attribute from the object

D. Inheritance allows one class to make multiple objects

3. True or False: Classes can inherit from multiple other classes.

Choose the correct answer:

A. True

B. False

MULTIPLE CHOICE

MULTIPLE CHOICE

Challenges (1)

1. Cube Volume

Use a superclass to find the volume of a cube. One class will be for a Square and the other class will be for a Cube.

1

2.

10.

11.

Create a class named square .

Inside the class named square , create the _ init () function with two parameters: self , length . Make sure
to assign the value of length to self. This will represent the length of a side of your square.

. Inside the class named square , create a method named side () . Inside the method named side() , create a

return statement that simply returns self.length . Remember to include the self parameter in the method.

. Inside the class named square , create another method named area() . Inside the method named area() , create

a return statement that returns the calculation for the area. Remember to include the self parameter in the
method.

. Inside the class named square , create another method named perimeter () . Inside the method named

perimeter () , Create a return statement that returns the calculation for the perimeter (self.length * 4).
Remember to include the self parameter in the method.

. Create another class named cube . Make sure to include parentheses and include the class named square inside.

This makes the class named square a super class. Now we can use methods from the class named square .

. Inside the class named cube , create the _ init_ () function with two parameters: self , and length . Now we

don't need to assign these to self because they are assigned to a different class.

.Inside the __init__ () function, include super(). _init__ (length) . This means that we want to use methods

from the designated super class.

. After the two classes have been made, create an object named mycube by using the class named cube and the

parameter (10) .

Create a variable named volume and set it to the function call to get the area multiplied by the function call to get
the side.

Print the variable named volume .

Requirements:

Create a class named Square.

Inside the class named Square, create the __init__() function with two parameters: self, length. Make sure to assign
the value of length to self. This will represent the length of a side of your square.

Inside the class named Square, create a method named side(). Inside the method named side(), create a return
statement that simply returns selflength. Remember to include the self parameter in the method.

Inside the class named Square, create another method named areal). Inside the method named areal(), create a
return statement that returns the calculation for the area. Remember to include the self parameter in the method.

Inside the class named Square, create another method named perimeter(). Inside the method named areal(), create a
return statement that returns the calculation for the perimeter (selflength * 4). Remember to include the self
parameter in the method.

Create another class named Cube. Make sure to include parentheses and include the class named Square inside.
This makes the class named Square a super class. Now we can use methods from the class named Square.

Inside the class named Cube, create the __init__() function with two parameters: self, and length. Now we don't need
to assign these to self because they are assigned to a different class.

Inside the __init__() function, include super().__init__(length). This means that we want to use methods from the
designated super class.

After the two classes have been made, create an object named myCube by using the class named Cube and the
parameter (10).

Create a variable named volume and set it to the function call to get the area multiplied by the function call to get
the side.

« Print the variable named volume.

Answer Keys & Solutions

Checkpoint Solutions

Super Classes

1 class Time:

2 def __init_ (self, free, homework):
3 self.free = free

4 self.homework = homework

5

6 def evening(self):

7 return self.free — self.homework
8

9 class Student(Time):

10 def __init_ (self, free, homework):
11 super().__init__(free, homework)
12

13

14

15 wednesday = Student(4, 3)
16 wednesday.evening()

Questions

MULTIPLE CHOICE
1. Which is the superclass in the following code?

Correct Answer:

A. Square X Incorrect
B. Rectangle v Correct
C. areql) X Incorrect
[D. perimeter() X Incorrect
[E. mySquare X Incorrect

Explanation:

The superclass is the class that other classes pull methods from.

MULTIPLE CHOICE
2. What is inheritance?

Correct Answer:

A. Inheritance allows a class to use properties of a different class. v Correct
B. Inheritance is when you don't need to make an object X Incorrect
C. Inheritance allows a method to use an attribute from the object X Incorrect
D. Inheritance allows one class to make multiple objects X Incorrect

Explanation:

Inheritance allows classes to use properties from other classes.

MULTIPLE CHOICE
3. True or False: Classes can inherit from multiple other classes.

Correct Answer:

‘ A. True v Correct ’

‘ B. False X Incorrect ‘

Explanation:

This is called multiple inheritance

Challenges

1. Cube Volume

Solution:

1 class Square:

2 def __init__ (self, length):

3 self.length = length

4

5 def side(self):

6 return self.length

7

8 def area(self):

9 return self.length x self.length
10

11 def perimeter(self):

12 return self.length *x 4

13

14 class Cube(Square):

15 def __init_ (self, length):

16 super().__init__(length)

17

18

19 myCube = Cube(10)

20 volume = myCube.area() * myCube.side()

print(volume)

