Skill
Struck

Evaluating Algorithms

Textbook

Evaluating Algorithms

When we create a set of instructions, or an algorithm, we check how well it works by looking at three main
things: if it's right, if it's easy to understand, and if it's quick.

Correctness

Being correct means the algorithm always gives the right answer for any proper input you give it, and it
finishes its job completely. If an algorithm isn't correct, nothing else about it really matters.

Here's how to check if an algorithm is correct:
e Test with Many Inputs: Try running your algorithm with different kinds of data:
o Normal Situations: Use inputs that are typical and what you'd usually expect.

o Extreme Situations: Use unusual or boundary inputs, like empty lists, lists with only one item, or
lists where all the items are the same.

o Bad Inputs: See what happens if the input isn't what the algorithm expects. A good algorithm
should handle these situations smoothly, perhaps by showing an error message.

« Debugging: This is when you find and fix problems, or "bugs," in your algorithm that stop it from
working right.

o Go Step-by-Step: Imagine you're the computer and manually go through each step of the

algorithm with a specific input.

o Show Values: In programming, you can temporarily display the values of different parts of your
code at various points to see what's happening internally.

Example: Finding the Smallest Number

If your algorithm is supposed to find the smallest number in a list like [5,2,8,19], it should correctly give you 1.
If the list is empty, like [], it should manage that situation properly, perhaps by telling you there's an error.

Clarity: Is it easy to understand?

Clarity, also known as readability, refers to how simple it is for a person to understand your algorithm. This is
super important for fixing problems, working with others, and making updates in the future.

Here's how to make an algorithm clear:

« Good Names: Use names for parts of your code that clearly describe what they are (for instance, use
student_score instead of just s).

https://curriculum.skillstruck.com/

¢ Notes: Add comments to explain complicated sections or choices you made when designing the
algorithm.

« Organized Steps: Make sure the algorithm's flow is logical and simple to follow.

Calculating an Average

Let's look at a common algorithm used to find the average of a group of numbers and examine it.

e s it correct? Does it do what it's supposed to? Try this algorithm with different inputs and see if it
gives the right answer. Does it have any errors?

« s it clear? Does it make sense to someone looking at it?

Less Clear Algorithm:

function calc(data):
total = 0
i=20
while i < length(data):
total = total + datalil
i=1+1
if length(data) > 0:
return total / length(data)
else:
return 0

More Clear Algorithm:

function calculate_average(numbers_list):
if length(numbers_list) ==
return @ # Handle empty 1list

sum_of_numbers = 0
for number in numbers_list:
sum_of_numbers = sum_of_numbers + number

average_result = sum_of_numbers / length(numbers_list)
return average_result

The second version is easier to understand because it uses better names and simpler logic.

Invitation

Take the algorithm above and try to improve it! What changes can you make? How could you write a new
program that does the same job or does it even better?

Software testing is vital for complex software systems. Various types of testing ensure quality.

Types of Software Testing

Unit Testing: Checks individual code pieces (e.g., a single function).
Integration Testing: Verifies if different software modules work together.
System Testing: Tests the complete system against all requirements.
Regression Testing: Reruns old tests after changes to ensure nothing broke.

Performance Testing: Assesses speed and stability under various loads, including load and stress
testing.

Security Testing: Finds vulnerabilities to prevent breaches.

User Acceptance Testing (UAT): End-users test the system to ensure it meets their needs.

Automated Testing Platforms

Automated testing platforms are tools that run tests automatically, saving time and increasing accuracy,
especially for complex systems.

Selenium: For automating web application testing.
Appium: For automating mobile application testing (i0S and Android).
Pytest (Python) and JUnit (Java): Frameworks for unit and integration testing.

Other platforms handle performance testing (e.g., JMeter) or API testing (e.g., Postman).

These platforms boost efficiency, accuracy, and test coverage, leading to significant long-term savings.

Computationally Unsolvable Problems

It's important to know that some problems are computationally unsolvable, meaning no algorithm can find
a correct solution for all inputs. The Halting Problem is a famous example: there's no program that can
always tell if any other given program will ever stop running. Understanding these limits helps developers
focus on solvable problems and design systems that handle unsolvable situations gracefully.

Critical Thinking Questions

1

Imagine you're creating an algorithm for a system that controls stoplights at a busy intersection. Why
would it be much more important to thoroughly test this algorithm with "extreme situations" (like an
unusually large amount of traffic going one way, or a complete power failure) rather than just with
typical traffic flow?

You've been given two different algorithms that both correctly put a list of names in alphabetical
order. One algorithm is much longer and uses very short, confusing names for its parts, while the
other is shorter and uses descriptive names and includes notes. If you had to choose one to maintain
and update for the next five years, which one would you pick and why?

An algorithm designed to figure out student grades works perfectly for students who turn in all their

assignments. However, when it's used for a student who has missing assignments, the program stops
working. Which part of evaluating an algorithm (correctness, clarity, or efficiency) does this problem

mostly relate to, and why is fixing this specific issue crucial before the algorithm can be trusted?

Questions (5)

1. You create an algorithm that is supposed to find the largest number in a list. When you give it
the list [3, 7, 2, 9], it correctly outputs 9. What aspect of algorithm evaluation does this
demonstrate?

MULTIPLE CHOICE

Choose the correct answer:
A. Clarity
B. Efficiency
C. Correctness

D. Debugging

2. Your algorithm is designed to calculate an average. When you give it an empty list [, it produces
an error message instead of crashing. This shows the algorithm handles what well?

MULTIPLE CHOICE

Choose the correct answer:
A. Typical Cases
B. Clarity

C. Edge Cases

D. Efficiency

3. You are looking at two algorithms. One uses variable names like X, y, z, while the other uses
names like student_name, grade_average. Which aspect of algorithm evaluation is better in the
second example?

MULTIPLE CHOICE

Choose the correct answer:
A. Correctness
B. Efficiency

C. Clarity

D. Debugging

4, Why are "comments” important in an algorithm, even if the algorithm works perfectly without
them?

MULTIPLE CHOICE

Choose the correct answer:

A. They make the algorithm run faster.
B. They hide errors from the computer.
C. They help humans understand complex parts or design choices.

D. They are only for very simple algorithms.

5. When you are trying to find and fix mistakes in your algorithm, what is this process called?

MULTIPLE CHOICE

Choose the correct answer:
A. Compiling
B. Debugging
C. Evaluating

D. Commenting

Answer Keys & Solutions

Questions

1. You create an algorithm that is supposed to find the largest number in a
list. When you give it the list [3, 7, 2, 9], it correctly outputs 9. What aspect of
algorithm evaluation does this demonstrate?

MULTIPLE CHOICE

Correct Answer:

A. Clarity X Incorrect
B. Efficiency X Incorrect
C. Correctness v Correct
D. Debugging X Incorrect

Explanation:

Think about whether the algorithm gives the right answer for a normal input.

2. Your algorithm is designed to calculate an average. When you give it an
empty list [], it produces an error message instead of crashing. This shows the
algorithm handles what well?

MULTIPLE CHOICE

Correct Answer:

A. Typical Cases X Incorrect
B. Clarity X Incorrect
C. Edge Cases v Correct
D. Efficiency X Incorrect

Explanation:

Consider how a robust algorithm deals with unusual or extreme inputs.

3. You are looking at two algorithms. One uses variable names like x, y, z,
while the other uses names like student_name, grade_average. Which aspect
of algorithm evaluation is better in the second example?

MULTIPLE CHOICE

Correct Answer:

A. Correctness X Incorrect
B. Efficiency X Incorrect
C. Clarity v Correct
D. Debugging X Incorrect

Explanation:

Think about what makes code easy for a human to understand.

4. Why are "comments” important in an algorithm, even if the algorithm works
perfectly without them?

MULTIPLE CHOICE

Correct Answer:

A. They make the algorithm run faster. X Incorrect
B. They hide errors from the computer. X Incorrect
C. They help humans understand complex parts or design choices. v Correct
D. They are only for very simple algorithms. X Incorrect

Explanation:

Think about who benefits from notes within the code.

5. When you are trying to find and fix mistakes in your algorithm, what is this
process called?

MULTIPLE CHOICE

Correct Answer:

‘ A. Compiling X Incorrect ‘

‘ B. Debugging v Correct ’

{ C. Evaluating X Incorrect

‘ D. Commenting X Incorrect

Explanation:

The word literally means removing "bugs."

