
Skill
Struck

Super Classes

Textbook

Super Classes

We can even create a class to put other classes into! This is called a super class. In this case, the children

class (the classes inside the big class) inherit the attributes or behaviors from the parent class.

Let's explore an example of some simple shape equations to help us understand superclasses.

class Rectangle:
 def __init__(self, width, height):
 self.width = width
 self.height = height

 def area(self):
 return self.width * self.height

 def perimeter(self):
 return 2 * self.width + 2 * self.height

class Square:
 def __init__(self, width, height):
 self.width = width

1
2
3
4
5
6
7
8
9
10
11
12
13
14

https://curriculum.skillstruck.com/

 self.height = height

 def area(self):
 return self.width * self.height

 def perimeter(self):
 return 2 * self.width + 2 * self.height

myRectangle = Rectangle(3, 10)
myRectangle.area()

mySquare = Square(5, 5)
mySquare.area()

15
16
17
18
19
20
21
22
23
24
25
26
27
28

We have created two classes for finding the area and perimeter of a rectangle and a square. You'll notice

that there is a lot of repeated code. This is because finding the area and perimeter of a square is a lot like

finding the area a perimeter of a rectangle.

Wouldn't it be a good idea to just use the same few lines of code for both places?

This is a good situation to use inheritance. Inheritance allows a class to use properties of a different class.

Super Class Inheritance
Now let's use super() to condense how much code we need to write.

Notice that the class named Square has parentheses with the class name Rectangle inside. This allows

this class to access the Rectangle class.

class Rectangle:
 def __init__(self, width, height):
 self.width = width
 self.height = height

 def area(self):
 return self.width * self.height

 def perimeter(self):
 return 2 * self.width + 2 * self.height

class Square(Rectangle):
 def __init__(self, width, height):
 super().__init__(width, height)

mySquare = Square(5, 5)
mySquare.area()

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18

Try it!

This will print out 25 .

Now, inside the class named Square , we still have the __init__() function which is always needed. But

below that, we used super().__init__(width, height) after it. This line of code gives the class named

Square access to the functions inside the class named Rectangle .

So now, at the bottom, we could create an object named mySquare by using the Square class. And we

can also use the area() function from the class named Rectangle .

The class named Rectangle is the superclass.

The class named Square is the subclass.

This is an example of inheritance. The Square class inherited the area() function from the Rectangle

class.

Multiple Inheritance
Classes can actually inherit content from multiple other classes! Let's say we wanted to find the area of a

house shape. This house shape is a square and a triangle put together. The triangle is the same height as

the square.

Let's say we have already created the code to find the area of the square and the area of the triangle.

Now you need to find the area of this shape. It would be efficient to simply use the code you already made

to find the area of the two separate shapes and combine them! This can be done with multiple inheritance.

class Square:
 def __init__(self, width, height):
 self.width = width
 self.height = height

 def areaSquare(self):
 return self.width * self.height

 def perimeter(self):
 return 2 * self.width + 2 * self.height

class Triangle():

1
2
3
4
5
6
7
8
9
10
11
12

Checkpoint

Super Classes
Practice creating a super class! First we will make 2 classes, and one will use a method from the other. These classes will help

calculate free time once homework time has been taken away.

1. Create a class named Time .

 def __init__(self, width, height):
 self.width = width
 self.height = height

 def areaTriangle(self):
 return self.width * self.height / 2

class House(Square, Triangle):
 def __init__(self, width, height):
 super().__init__(width, height)

 def areaHouse(self):
 areaBottom = super().areaSquare()
 areaTop = super().areaTriangle()
 return areaBottom + areaTop

myHouse = House(5, 5)
myHouse.areaHouse()

13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

Try it!

So let's unpack this code a bit.

1.

2.

3.

4.

5.

6.

7.

The class named House pulls information from the class named Square and the class named

Triangle , as can be found in the parentheses after House .

Inside the class named house, we have the normal __init__() function with the parameters that

match the parameters in the previous classes.

We also have the code to access other classes.

super().__init__(width, height)

The class named House also has another method named areaHouse . This method has some

variables named areaBottom and areaTop . These variables are set equal to function calls in the

other classes. These other functions are named areaSquare() and areaTriangle(). These values

are then added together and returned.

Towards the bottom we create a new object called myHouse and set it equal to the class named

House with specific parameters.

The last line of code then asks for the specific function named areaHouse() inside the class

myHouse to run. which returns the area of the house shape.

2. Inside the class named Time , create the __init__() function with three parameters: self , free , and homework .

Make sure to assign these values to self. These values will represent free time and time spent on homework.

3. Inside the class named Time , create a method named evening() . Inside the method named evening() , create a

return statement that returns self.free - self.homework . Remember to include the self parameter in the method.

4. Create another class named Student . Make sure to include parentheses and include the class named Time inside. This

makes the class named Time a super class. Now we can use methods from the class named Time .

5. Inside the class named Student , create the __init__() function with three parameters: self , free , and

homework . Now we don’t need to assign these to self because they are assigned to a different class.

6. Inside the __init__() function, include super().__init__(free, homework) . This means that we want to use

methods from the designated super class.

7. After the two classes have been made, create an object named wednesday by using the class named Student and the

parameters (4, 3) .

8. Finally call the method named evening on the object named wednesday .

Requirements:

Create a class named Time.

Inside the class named Time, create the __init__() function with three parameters: self, free, and homework. Make sure to

assign these values to self. These values will represent free time and time spent on homework.

Inside the class named Time, create a method named evening(). Inside the method named evening(), create a return

statement that returns self.free - self.homework. Remember to include the self parameter in the method.

Create another class named Student. Make sure to include parentheses and include the class named Time inside. This

makes the class named Time a super class. Now we can use methods from the class named Time.

Inside the class named Student, create the __init__() function with three parameters: self, free, and homework. Now we

don’t need to assign these to self because they are assigned to a different class.

Inside the __init__() function, include super().__init__(free, homework). This means that we want to use methods from the

designated super class.

After the two classes have been made, create an object named wednesday by using the class named Student and the

parameters (4, 3).

Finally call the method named evening on the object named wednesday.

Questions (3)

1. Which is the superclass in the following code?
MULTIPLE CHOICE

class Rectangle: def __init__(self, width, height): self.width = width self.height = height def area(self): return self.width *

self.height def perimeter(self): return 2 * self.width + 2 * self.height class Square(Rectangle): def __init__(self, width, height):

super().__init__(width, height) mySquare = Square(5, 5) mySquare.area()

Choose the correct answer:

A. Square

B. Rectangle

C. area()

D. perimeter()

E. mySquare

2. What is inheritance?
MULTIPLE CHOICE

Choose the correct answer:

A. Inheritance allows a class to use properties of a different class.

B. Inheritance is when you don't need to make an object

C. Inheritance allows a method to use an attribute from the object

D. Inheritance allows one class to make multiple objects

3. True or False: Classes can inherit from multiple other classes.
MULTIPLE CHOICE

Choose the correct answer:

A. True

B. False

Challenges (1)

1. Cube Volume

Use a superclass to find the volume of a cube. One class will be for a Square and the other class will be for a Cube.

1. Create a class named Square .

2. Inside the class named Square , create the __init__() function with two parameters: self , length . Make sure

to assign the value of length to self. This will represent the length of a side of your square.

3. Inside the class named Square , create a method named side() . Inside the method named side() , create a

return statement that simply returns self.length . Remember to include the self parameter in the method.

4. Inside the class named Square , create another method named area() . Inside the method named area() , create

a return statement that returns the calculation for the area. Remember to include the self parameter in the

method.

5. Inside the class named Square , create another method named perimeter() . Inside the method named

perimeter() , create a return statement that returns the calculation for the perimeter (self.length * 4).

Remember to include the self parameter in the method.

6. Create another class named Cube . Make sure to include parentheses and include the class named Square inside.

This makes the class named Square a super class. Now we can use methods from the class named Square .

7. Inside the class named Cube , create the __init__() function with two parameters: self , and length . Now we

don’t need to assign these to self because they are assigned to a different class.

8. Inside the __init__() function, include super().__init__(length) . This means that we want to use methods

from the designated super class.

9. After the two classes have been made, create an object named myCube by using the class named Cube and the

parameter (10) .

10. Create a variable named volume and set it to the function call to get the area multiplied by the function call to get

the side.

11. Print the variable named volume .

Requirements:

Create a class named Square.

Inside the class named Square, create the __init__() function with two parameters: self, length. Make sure to assign

the value of length to self. This will represent the length of a side of your square.

Inside the class named Square, create a method named side(). Inside the method named side(), create a return

statement that simply returns self.length. Remember to include the self parameter in the method.

Inside the class named Square, create another method named area(). Inside the method named area(), create a

return statement that returns the calculation for the area. Remember to include the self parameter in the method.

Inside the class named Square, create another method named perimeter(). Inside the method named area(), create a

return statement that returns the calculation for the perimeter (self.length * 4). Remember to include the self

parameter in the method.

Create another class named Cube. Make sure to include parentheses and include the class named Square inside.

This makes the class named Square a super class. Now we can use methods from the class named Square.

Inside the class named Cube, create the __init__() function with two parameters: self, and length. Now we don’t need

to assign these to self because they are assigned to a different class.

Inside the __init__() function, include super().__init__(length). This means that we want to use methods from the

designated super class.

After the two classes have been made, create an object named myCube by using the class named Cube and the

parameter (10).

Create a variable named volume and set it to the function call to get the area multiplied by the function call to get

the side.

Print the variable named volume.

Answer Keys & Solutions

Checkpoint Solutions

Super Classes

Questions

1. Which is the superclass in the following code?
MULTIPLE CHOICE

Correct Answer:

B. Rectangle ✓ Correct

Explanation:

The superclass is the class that other classes pull methods from.

2. What is inheritance?
MULTIPLE CHOICE

class Time:
 def __init__(self, free, homework):
 self.free = free
 self.homework = homework

 def evening(self):
 return self.free - self.homework

class Student(Time):
 def __init__(self, free, homework):
 super().__init__(free, homework)

wednesday = Student(4, 3)
wednesday.evening()

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

A. Square ✗ Incorrect

C. area() ✗ Incorrect

D. perimeter() ✗ Incorrect

E. mySquare ✗ Incorrect

Correct Answer:

A. Inheritance allows a class to use properties of a different class. ✓ Correct

Explanation:

Inheritance allows classes to use properties from other classes.

3. True or False: Classes can inherit from multiple other classes.
MULTIPLE CHOICE

Correct Answer:

A. True ✓ Correct

Explanation:

This is called multiple inheritance

Challenges

1. Cube Volume

Solution:

B. Inheritance is when you don't need to make an object ✗ Incorrect

C. Inheritance allows a method to use an attribute from the object ✗ Incorrect

D. Inheritance allows one class to make multiple objects ✗ Incorrect

B. False ✗ Incorrect

class Square:
 def __init__(self, length):
 self.length = length

 def side(self):
 return self.length

 def area(self):
 return self.length * self.length

 def perimeter(self):
 return self.length * 4

class Cube(Square):
 def __init__(self, length):
 super().__init__(length)

myCube = Cube(10)
volume = myCube.area() * myCube.side()

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

print(volume)
21
22

