
Skill
Struck

Evaluating Algorithms

Textbook

Evaluating Algorithms

When we create an algorithm, we evaluate how well it works based on correctness, clarity, and efficiency.

Correctness
Correctness means the algorithm consistently produces the accurate output for every valid input and

finishes its task. If an algorithm isn't correct, its other qualities don't matter.

How to check for correctness:

Testing with Multiple Inputs: Try your algorithm with various types of data:

Typical Cases: Normal, expected inputs.

Edge Cases: Extreme inputs (e.g., empty lists, single-item lists, lists with all identical items).

Invalid Inputs: What happens if the input is unexpected? A robust algorithm handles these

gracefully (e.g., with an error message).

Debugging: This is the process of finding and fixing mistakes ("bugs") when your algorithm doesn't

work correctly.

Step-by-step check: Manually trace the algorithm's execution with a specific input.

https://curriculum.skillstruck.com/

Print values: In programming, temporarily display variable values at different points to see

what's happening.

Example: Finding the Smallest Number If your algorithm finds the smallest number in [5, 2, 8, 1, 9] , it

should output 1 . For an empty list [] , it should handle it gracefully (e.g., return an error).

Clarity: Is it easy to understand?
Clarity (or readability) means how easy it is for a human to understand your algorithm. This is important for

debugging, teamwork, and future updates.

How to make an algorithm clear:

Meaningful Names: Use descriptive names for variables and functions (e.g., student_score instead

of s).

Comments: Add notes to explain complex parts or design choices.

Organized Steps: Keep the algorithm's flow logical and easy to follow.

Calculating an Average
Let's take a well known algorithm for finding the average from a set of numbers and analyze it.

1.

2.

Is it correct? Does it accomplish what it was supposed to? Try this algorithm with multiple inputs and

see if it gives the correct answer. Does it have any bugs?

Is it clear? Does it make sense to the user?

Less Clear Algorithm:

function calc(data):
 total = 0
 i = 0
 while i < length(data):
 total = total + data[i]
 i = i + 1
 if length(data) > 0:
 return total / length(data)
 else:
 return 0

1
2
3
4
5
6
7
8
9
10
11
12

More Clear Algorithm:

function calculate_average(numbers_list):
 if length(numbers_list) == 0:
 return 0 # Handle empty list

 sum_of_numbers = 0
 for number in numbers_list:
 sum_of_numbers = sum_of_numbers + number

 average_result = sum_of_numbers / length(numbers_list)

1
2
3
4
5
6
7
8
9

Questions (5)

1. You create an algorithm that is supposed to find the largest number in a list. When you give it
the list [3, 7, 2, 9], it correctly outputs 9. What aspect of algorithm evaluation does this
demonstrate?

MULTIPLE CHOICE

Choose the correct answer:

A. Clarity

B. Efficiency

C. Correctness

D. Debugging

 return average_result10
11
12

The second version is clearer due to better naming and concise logic.

Invitation

Take the above algorithm and improve on it! What improvements can you make? How could you write a

new program that accomplishes the same thing or make it better?

Critical Thinking Questions
1.

2.

3.

Imagine you're developing an algorithm for a system that controls traffic lights at a busy intersection.

Why would thoroughly testing this algorithm with "edge cases" (like unusually high traffic at one turn,

or a complete power outage) be even more critical than just testing with typical traffic flow?

You've been given two different algorithms that both correctly sort a list of names alphabetically. One

algorithm is much longer and uses very short, unclear variable names, while the other is shorter and

uses descriptive names and comments. If you had to choose one to maintain and update over the

next five years, which would you pick and why?

An algorithm designed to calculate student grades works perfectly for students who complete all

assignments. However, when tested with a student who has missing assignments, it crashes. Which

aspect of algorithm evaluation (correctness, clarity, or efficiency) does this problem primarily relate to,

and why is addressing this particular issue essential before the algorithm can be considered reliable?

2. Your algorithm is designed to calculate an average. When you give it an empty list [], it produces
an error message instead of crashing. This shows the algorithm handles what well?

MULTIPLE CHOICE

Choose the correct answer:

A. Typical Cases

B. Clarity

C. Edge Cases

D. Efficiency

3. You are looking at two algorithms. One uses variable names like x, y, z, while the other uses
names like student_name, grade_average. Which aspect of algorithm evaluation is better in the
second example?

MULTIPLE CHOICE

Choose the correct answer:

A. Correctness

B. Efficiency

C. Clarity

D. Debugging

4. Why are "comments" important in an algorithm, even if the algorithm works perfectly without
them?

MULTIPLE CHOICE

Choose the correct answer:

A. They make the algorithm run faster.

B. They hide errors from the computer.

C. They help humans understand complex parts or design choices.

D. They are only for very simple algorithms.

5. When you are trying to find and fix mistakes in your algorithm, what is this process called?

MULTIPLE CHOICE

Choose the correct answer:

A. Compiling

B. Debugging

C. Evaluating

D. Commenting

Answer Keys & Solutions

Questions

1. You create an algorithm that is supposed to find the largest number in a
list. When you give it the list [3, 7, 2, 9], it correctly outputs 9. What aspect of
algorithm evaluation does this demonstrate?

MULTIPLE CHOICE

Correct Answer:

C. Correctness ✓ Correct

Explanation:

Think about whether the algorithm gives the right answer for a normal input.

2. Your algorithm is designed to calculate an average. When you give it an
empty list [], it produces an error message instead of crashing. This shows the
algorithm handles what well?

MULTIPLE CHOICE

Correct Answer:

C. Edge Cases ✓ Correct

Explanation:

Consider how a robust algorithm deals with unusual or extreme inputs.

A. Clarity ✗ Incorrect

B. Efficiency ✗ Incorrect

D. Debugging ✗ Incorrect

A. Typical Cases ✗ Incorrect

B. Clarity ✗ Incorrect

D. Efficiency ✗ Incorrect

3. You are looking at two algorithms. One uses variable names like x, y, z,
while the other uses names like student_name, grade_average. Which aspect
of algorithm evaluation is better in the second example?

MULTIPLE CHOICE

Correct Answer:

C. Clarity ✓ Correct

Explanation:

Think about what makes code easy for a human to understand.

4. Why are "comments" important in an algorithm, even if the algorithm works
perfectly without them?

MULTIPLE CHOICE

Correct Answer:

C. They help humans understand complex parts or design choices. ✓ Correct

Explanation:

Think about who benefits from notes within the code.

5. When you are trying to find and fix mistakes in your algorithm, what is this
process called?

MULTIPLE CHOICE

Correct Answer:

B. Debugging ✓ Correct

A. Correctness ✗ Incorrect

B. Efficiency ✗ Incorrect

D. Debugging ✗ Incorrect

A. They make the algorithm run faster. ✗ Incorrect

B. They hide errors from the computer. ✗ Incorrect

D. They are only for very simple algorithms. ✗ Incorrect

A. Compiling ✗ Incorrect

Explanation:

The word literally means removing "bugs."

C. Evaluating ✗ Incorrect

D. Commenting ✗ Incorrect

