
Skill
Struck

Creating an Instance

Textbook

Creating an Instance/Object

Overview
To review - a class is a blueprint of an object. An instance is the implementation of that blueprint to create

an actual object in our program.

For example, let's say we used the same blueprints to build five different houses. Each of these houses has

different owners, and they were able to customize the materials in each of their houses. Even though they're

built from the same blueprints, each house still has unique attributes.

In this example, each of the five different houses is an instance of the house class . The blueprints are the

exact same, but each instance has some different attributes.

Create an Object/Instance
Now that we have created a Person class, we're now able to create an instance of that class, or in other

words, we are ready to create an object!

Let's create an instance of a young woman named Jasmine:

https://curriculum.skillstruck.com/

class Person:

 def __init__(self, name, age, gender):
 self.name = name
 self.age = age
 self.gender = gender

p1 = Person("Jasmine", "15", "Female")

print(p1)

1
2
3
4
5
6
7
8
9
10

Try it!

As you can see, we created a new variable named p1 and assign that to a new instance of the Person

class. The variable named p1 is an object that represents Jasmine in our program. The p1 object has the

attributes of Jasmine as the name, 15 as the age, and Female as the gender.

Accessing Attributes of an Object
As you can see from the above example, when you print p1 , it returns a reference to that object. It doesn't

return the attributes of your object. Let's learn how to access the specific attributes of your object named

p1 .

This is done by calling the object name and the attribute like this:

p1.attribute

class Person:

 def __init__(self, name, age, gender):
 self.name = name
 self.age = age
 self.gender = gender

p1 = Person("Jasmine", "15", "Female")

print(p1.name)

1
2
3
4
5
6
7
8
9
10

Try it!

We can also concatenate different parts of the object like this.

class Person:

 def __init__(self, name, age, gender):
 self.name = name
 self.age = age
 self.gender = gender

p1 = Person("Jasmine", "15", "Female")

print("Person 1: " + p1.name + " " + p1.age + " " + p1.gender)

1
2
3
4
5
6
7
8
9
10

Try it!

Another Instance of the Class named Person
Let's create another person, an old man named George . We will use the class named Person to create

another object, or another instance of the class.

class Person:

 def __init__(self, name, age, gender):
 self.name = name
 self.age = age
 self.gender = gender

p1 = Person("Jasmine", "15", "Female")
p2 = Person("George", "67", "Male")

print("Person 1: " + p1.name + " " + p1.age + " " + p1.gender)
print("Person 2: " + p2.name + " " + p2.age + " " + p2.gender)

1
2
3
4
5
6
7
8
9
10
11
12

Try it!

Now, if we want to access the information about each of these objects, it's very easy. See the sample code

below, along with what that code would print out:

class Person:

 def __init__(self, name, age, gender):
 self.name = name
 self.age = age
 self.gender = gender

p1 = Person("Jasmine", "15", "Female")
p2 = Person("George", "67", "Male")

print(p1.name)
print(p2.gender)
print(p1.age)
print(p1.gender)
print(p2.name)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

Try it!

Create your own Instance
Following the steps above, add onto the Pet class you made in the previous project. Create a new

instance of a Pet , give it a name and a species , and print it out.

Checkpoint

Create an Instance
Create an instance of a class!

1. Create a class named Hat .

2. Inside the class, include three attributes: kind , color , material

3. Make sure the attributes are in that order.

4. Create an instance of the class named Hat . Name the instance myObject .

Requirements:

Create a class named Hat

Inside the class named Hat , create the __init__() section

Reference the kind attribute to the class name using self .

Reference the color attribute to the class name using self .

Reference the material attribute to the class name using self .

Create an object named myObject by using the Hat template.

Questions (10)

1. What is the following code an example of?
MULTIPLE CHOICE

first = Animal("Furry", "Brown", "4 legs")

Choose the correct answer:

A. An object

B. A class

C. A list

D. A loop

2. What is another way of saying "create an instance of a class?"
MULTIPLE CHOICE

Choose the correct answer:

A. Create an object

B. Create a template or blueprint

C. Create a list

D. Create a variable

3. Which of the following is most similar to a blueprint?
MULTIPLE CHOICE

Choose the correct answer:

A. class

B. object

C. instance

D. variable

4. Which of the following is the way to access the attribute "salad" in the object named myObject?

MULTIPLE CHOICE

class Dinner: def __init__(self, main, side, drink): self.main = main self.side = side self.drink = drink myObject =

Dinner("pasta", "salad", "juice") print(myObject)

Choose the correct answer:

A. myObject.side

B. myObject.salad

C. Dinner.side

D. Dinner.salad

5. How many objects can be made with one class?
MULTIPLE CHOICE

Choose the correct answer:

A. One

B. As many objects as there are attributes in the class.

C. As many as you want.

D. 4

6. Which term is used to describe an actual object created from a class blueprint?
MULTIPLE CHOICE

Choose the correct answer:

A. Blueprint

B. Implementation

C. Instance

D. Reference

7. How do you access the attributes of an object named p1?
MULTIPLE CHOICE

Choose the correct answer:

A. p1.attribute

B. attribute.p1

C. p1[attribute]

D. p1->attribute

8. What does the following code print?
MULTIPLE CHOICE

class Person: def __init__(self, name, age, gender): self.name = name self.age = age self.gender = gender p1 =

Person("George", "67", "Male") print("Person 1: " + p1.name + " " + p1.age + " " + p1.gender)

Choose the correct answer:

A. Person 1: George 67 Male

B. Person 1: 67 Male George

C. George 67 Male

D. Person 1: "George 67 Male"

9. What is the purpose of creating multiple instances of a class?
MULTIPLE CHOICE

Choose the correct answer:

A. To create different classes

B. To customize attributes for each instance

C. To share attributes among instances

D. To make the code longer

10. Debug the following code:
DEBUG CODE

Code to Debug:

class Person:

 def __init__(self, name, age, gender):
 self.name = name
 self.age = age
 self.gender = gender

p1 = person("Jasmine", "15", "Female")

print(p1.name)

1
2
3
4
5
6
7
8
9
10

Challenges (3)

1. A Fruit Festival

You are building an app for a fruit arrangement company. They want to have a template that would be easy to create

different bouquets.

1. Create 4 different objects using the same class!

2. Use the following class named Fruit to create your objects.

3. Print the kind attribute for each of your objects.

Example Output:

Requirements:

Create 4 objects using the class named Fruit .

Print the kind attribute for each of your objects.

2. Pet Store

Create a class named Pet with at least 3 attributes

Use the class named Pet to create at least 3 instances of the class.

Requirements:

Create a class named Pet

Inside the class named Pet , create the __init__() section

Reference all 3 attributes to the class name using self .

Create 3 instances of the object named Pet

class Fruit: def __init__(self, shape, kind, size): self.shape = shape self.kind = kind self.size = size

3. Vacation Planner

1. Create a class named Vacation with at least 3 attributes: location , activity , food (in that order)

2. Use the class named Vacation to create at least 3 instances of the class.

3. Use an attribute from each instance in a concatenated sentence.

Requirements:

Create a class named Vacation

Inside the class named Vacation , create the __init__() section with the designated attributes in the correct

order.

Reference the location attribute to the class name using self .

Reference the activity attribute to the class name using self .

Reference the food attribute to the class name using self .

Create three objects by using the Vacation template.

Use an attribute from each instance in 3 separate concatenated sentences.

Answer Keys & Solutions

Checkpoint Solutions

Create an Instance

Questions

1. What is the following code an example of?
MULTIPLE CHOICE

Correct Answer:

A. An object ✓ Correct

Explanation:

This bit of code is using a class named Animal to create something.

2. What is another way of saying "create an instance of a class?"
MULTIPLE CHOICE

Correct Answer:

A. Create an object ✓ Correct

class Hat:

 def __init__(self, kind, color, material):
 self.kind = kind
 self.color = color
 self.material = material

myObject = Hat("warm fuzzy", "pink", "fleece")

print(myObject)

1
2
3
4
5
6
7
8
9
10

B. A class ✗ Incorrect

C. A list ✗ Incorrect

D. A loop ✗ Incorrect

B. Create a template or blueprint ✗ Incorrect

C. Create a list ✗ Incorrect

Explanation:

This is how to use object oriented programming.

3. Which of the following is most similar to a blueprint?
MULTIPLE CHOICE

Correct Answer:

A. class ✓ Correct

Explanation:

This helps to create objects.

4. Which of the following is the way to access the attribute "salad" in the
object named myObject?

MULTIPLE CHOICE

Correct Answer:

A. myObject.side ✓ Correct

Explanation:

10

5. How many objects can be made with one class?
MULTIPLE CHOICE

Correct Answer:

D. Create a variable ✗ Incorrect

B. object ✗ Incorrect

C. instance ✗ Incorrect

D. variable ✗ Incorrect

B. myObject.salad ✗ Incorrect

C. Dinner.side ✗ Incorrect

D. Dinner.salad ✗ Incorrect

C. As many as you want. ✓ Correct

Explanation:

Remember that a class is like a blueprint for a house.

6. Which term is used to describe an actual object created from a class
blueprint?

MULTIPLE CHOICE

Correct Answer:

C. Instance ✓ Correct

Explanation:

In programming, an object is called an instance of the class

7. How do you access the attributes of an object named p1?
MULTIPLE CHOICE

Correct Answer:

A. p1.attribute ✓ Correct

Explanation:

The object name comes first.

A. One ✗ Incorrect

B. As many objects as there are attributes in the class. ✗ Incorrect

D. 4 ✗ Incorrect

A. Blueprint ✗ Incorrect

B. Implementation ✗ Incorrect

D. Reference ✗ Incorrect

B. attribute.p1 ✗ Incorrect

C. p1[attribute] ✗ Incorrect

D. p1->attribute ✗ Incorrect

8. What does the following code print?
MULTIPLE CHOICE

Correct Answer:

A. Person 1: George 67 Male ✓ Correct

Explanation:

The name comes first, then the age, then the gender

9. What is the purpose of creating multiple instances of a class?
MULTIPLE CHOICE

Correct Answer:

B. To customize attributes for each instance ✓ Correct

Explanation:

Each instance has specific attributes

10. Debug the following code:
DEBUG CODE

Incorrect Code:

B. Person 1: 67 Male George ✗ Incorrect

C. George 67 Male ✗ Incorrect

D. Person 1: "George 67 Male" ✗ Incorrect

A. To create different classes ✗ Incorrect

C. To share attributes among instances ✗ Incorrect

D. To make the code longer ✗ Incorrect

class Person:

 def __init__(self, name, age, gender):
 self.name = name
 self.age = age
 self.gender = gender

p1 = person("Jasmine", "15", "Female")

1
2
3
4
5
6
7
8
9

Correct Solution:

Explanation:

There's a word that needs to be capitalized

Challenges

1. A Fruit Festival

Solution:

2. Pet Store

Solution:

print(p1.name)10

class Person:

 def __init__(self, name, age, gender):
 self.name = name
 self.age = age
 self.gender = gender

p1 = Person("Jasmine", "15", "Female")

print(p1.name)

1
2
3
4
5
6
7
8
9
10

class Fruit:

 def __init__(self, shape, kind, size):
 self.shape = shape
 self.kind = kind
 self.size = size

first = Fruit("flower", "apple", "small")
second = Fruit("bird", "watermelon", "tall")
third = Fruit("pattern", "avocado", "small")
fourth = Fruit("bird", "orange", "big")

print(first.kind)
print(second.kind)
print(third.kind)
print(fourth.kind)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17

class Pet:

 def __init__(self, name, kind, age):
 self.name = name
 self.kind = kind
 self.age = age

1
2
3
4
5
6
7

3. Vacation Planner

Solution:

first = Pet("Speedy", "lizard", "2")
second = Pet("Spot", "dog", "4")
third = Pet("Ferdinand", "goat", "5")

8
9
10
11

class Vacation:

 def __init__(self, location, activity, food):
 self.location = location
 self.activity = activity
 self.food = food

first = Vacation("Beach", "snorkeling", "smoothies")
second = Vacation("Mountain", "rock climbing", "dutch oven")
third = Vacation("Theme Park", "roller coaster", "pizza")

print("I'm excited to go visit the " + first.location)
print("I would love to do some " + second.activity)
print("I love to eat " + third.food)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

