
Skill
Struck

For Loops with Python Turtles

Textbook

For Loops with Python Turtles

Loops are chunks of code that repeat. Often, a loop will run until a certain condition is met.

Let's practice adding some loops to our turtle programs.

For Loop
Let's say we want to draw a square. You might have noticed that to do this, you need to move the turtle

forward and then turn 90 degrees, repeated 4 times., that's a pattern.

import turtle
turtle.getscreen()

turtle.forward(50)
turtle.left(90)
turtle.forward(50)
turtle.left(90)

1
2
3
4
5
6
7

https://curriculum.skillstruck.com/

turtle.forward(50)
turtle.left(90)
turtle.forward(50)
turtle.left(90)

8
9
10
11

Instead of typing out all that code, let's use a for loop. It looks like this:

import turtle
turtle.getscreen()

for my_counter in range(4):
 turtle.forward(100)
 turtle.left(90)

1
2
3
4
5
6

Let's break down this code a bit.

for my_counter in range():

This is the code to set up the for loop. The my_counter represents a kind of counter that starts at 0. Each

time the loop runs, the counter increases by 1 until it reaches the value in the parentheses. In this case, the

loop will run 4 times because there is a 4 inside the parentheses of range() .

Indentation
Notice how in the above example, the code you want to repeat is all indented one tab space. Indentation

is VERY important in Python. Everything you want to repeat (in other words, everything inside the for loop)

should be indented.

Try changing the number in the parentheses of the range! Try changing the angle your turtle turns to see

what you can make.

Another Example

import turtle
turtle.getscreen()

for my_counter in range(10):
 turtle.forward(50)
 turtle.left(40)

1
2
3
4
5
6

Patterns and Structure
Imagine you have a secret code to crack, or a complex puzzle to solve. Often, the key isn't brute force, but

noticing what repeats, what fits together, and how the pieces are organized. In math and computing, this is

called using patterns and structure to understand and connect concepts. It's like having a superpower that

lets you see the hidden blueprint of a problem!

Your Challenge: The next time you face a new math problem or this coding task, don't just jump in. First,

take a moment to focus on the relevant details. Can you spot any repeating elements? Does the problem

look similar to something you've solved before? Then, try to create a plan or procedure to logically order the

steps you'll need to take. If it's a big problem, remember to decompose it into manageable parts. Look for

Checkpoint

For Loops with Python Turtles
Practice creating a for loop in Python Turtles!

1. Include the necessary code to start up a Python screen. (Import the library and generate a screen.)

2. Add a for loop with a range of your choice. Use my_counter .

3. Inside the for loop, include at least 2 commands for your turtle to repeat.

Requirements:

Include the necessary code to start up a Python screen. (Import the library and generate a screen.)

Add a for loop with a range of your choice. Use my_counter .

Inside the for loop, include at least 2 commands for your turtle to repeat.

Questions (10)

1. What is the purpose of a loop in programming?
MULTIPLE CHOICE

Choose the correct answer:

A. To make code easier to read

B. To repeat a set of instructions

C. To speed up the program

D. To slow down the program

similarities between what you're learning now and what you've already mastered. By recognizing these

patterns and understanding the structure, you'll not only solve the current problem but also connect its

solution to more complicated, large-scale situations, making you a much stronger problem-solver!

Assessing the Reasonableness of Solutions
When writing code with for loops—especially when using tools like Python Turtles—it's important to pause

and ask: Does this solution make sense? Before running your program, think through what each part of the

loop will do. How many times will the turtle move? Will it turn enough to complete the shape you're

expecting? Predicting the outcome and checking if the logic is sound helps catch mistakes early and

encourages clearer thinking.

For example, if you're using a for loop to draw a square and your turn angle is set to 100 degrees instead of

90, the shape won't close properly. By estimating and visualizing the result ahead of time, you can identify

these kinds of errors and make corrections before running the code. This kind of reasoning isn't just helpful—

it's a key habit of successful programmers.

2. In the given For Loop example, how many times will the turtle move forward and turn left?

MULTIPLE CHOICE

import turtle turtle.getscreen() for my_counter in range(4): turtle.forward(50) turtle.left(90)

Choose the correct answer:

A. 4

B. 5

C. 8

D. 2

3. Why is indentation important in Python, especially within a loop?
MULTIPLE CHOICE

Choose the correct answer:

A. It makes the code look neat and organized

B. It helps the program run faster

C. It indicates what code is inside the For Loop

D. It requires less code overall

4. How many times will the following code run? (Notice that the code is NOT indented)

MULTIPLE CHOICE

import turtle turtle.getscreen() for my_counter in range(3): turtle.forward(20) turtle.left(45)

Choose the correct answer:

A. 1

B. It will throw an error

C. 2

D. 3

5. What is the purpose of the "range()" function in the For Loop?
MULTIPLE CHOICE

Choose the correct answer:

A. It defines the size of the turtle screen

B. It sets the speed of the turtle

C. It determines the number of iterations for the loop

D. It specifies the turtle's color

6. What is the role of the variable "my_counter" in the For Loop?
MULTIPLE CHOICE

Choose the correct answer:

A. It defines the number of sides in the square

B. It controls the speed of the turtle

C. It represents a value that increases by 1 each time the loop runs

D. It specifies the color of the turtle

7. Debug the following code:
DEBUG CODE

Code to Debug:

8. Debug the following code:
DEBUG CODE

Code to Debug:

9. Debug the following code:
DEBUG CODE

Code to Debug:

import turtle
turtle.getscreen()

for my_counter in range(4)
 turtle.forward(100)
 turtle.left(90)

1
2
3
4
5
6

import turtle
turtle.getscreen()

for my counter in range(4):
 turtle.forward(100)
 turtle.left(90)

1
2
3
4
5
6

import turtle
turtle.getscreen()

for my_counter in count(8):
 turtle.right(30)
 turtle.forward(20)

1
2
3
4
5
6

10. Debug the following code:
DEBUG CODE

Code to Debug:

Challenges (5)

1. Star Continued

Back in Python Turtles 1, we worked on a project where we drew a 5 point star. Here is the code from that project.

import turtle

turtle.getscreen()

turtle.forward(100)

turtle.left(144)

turtle.forward(100)

turtle.left(144)

turtle.forward(100)

turtle.left(144)

turtle.forward(100)

turtle.left(144)

turtle.forward(100)

turtle.left(144)

Take the code as an example and improve it by using a for loop instead of repeating code over and over again. See

how the for loop has less code overall? It’s considered best practice in coding to do the most amount of programming

with the least amount of code possible.

1. Include the necessary code to start up a Python screen. (Import the library and generate a screen.)

2. Add a for loop with a range of 5.

3. Add the appropriate code to your for loop improve the above example. Use turtle.left() .

Requirements:

Include the necessary code to start up a Python screen. (Import the library and generate a screen.)

Add a for loop with a range of 5. Use my_counter .

Add the appropriate code to your for loop improve the above example. Use turtle.left() .

import turtle
turtle.getscreen()

for my_counter in range(8):
 turtleright(30)
 turtle.forward(20)

1
2
3
4
5
6

2. Stop Sign

Draw a stop sign using Python turtles! A stop sign is a red octagon that has 8 sides. Each interior angle in a stop sign is

135 degrees.

1. Include the necessary code to start up a Python screen. (Import the library and generate a screen.)

2. Use begin_fill() , end_fill() , and fillcolor() to make the stop sign red .

3. Add a for-loop with the range needed to make the stop sign. Use my_counter .

4. Inside the for loop use the necessary commands to create your stop sign.

Requirements:

Include the necessary code to start up a Python screen. (Import the library and generate a screen.)

Use begin_fill() , end_fill() , and fillcolor() to make the stop sign red .

Add a for-loop with the range needed to make the stop sign. Use my_counter .

Inside the for-loop, use the necessary commands to create your stop sign.

3. 20 20 20 Flower

Create a program that has 3 values of 20: The range., Circle radius, Rotating to the right.

1. Include the necessary code to start up a Python screen. (Import the library and generate a screen.)

2. Add a for loop with a range of 20. Use my_counter .

3. Inside the for loop, draw a circle with a radius of 20.

4. Inside the for loop, rotate to the right 20 degrees.

Requirements:

Include the necessary code to start up a Python screen. (Import the library and generate a screen.)

Add a for loop with a range of 20. Use my_counter .

Inside the for loop, draw a circle with a radius of 20.

Inside the for loop, rotate to the right 20 degrees.

4. Square Petals

Create a flower with square petals!

1. Include the necessary code to start up a Python screen. (Import the library and generate a screen.)

2. Include a fillcolor , begin_fill , and end_fill .

3. Include a for loop that uses range and my_counter .

4. Include at least 3 petals. The petals must have corners and have at least 2 turns of 90 degrees. (After creating a

petal, rotate your turtle to create another one.)

Requirements:

Include the necessary code to start up a Python screen. (Import the library and generate a screen.)

Include a fillcolor , followed by a begin_fill command.

Include a for loop that uses range and my_counter .

Include at least 3 petals. The petals must have corners and have at least 2 turns of 90 degrees. (After creating a

petal, rotate your turtle to create another one.)

Include an end_fill command.

5. Stained Glass

Create a cool piece of stained glass! Do this by adding two for loops to your code! See what kind of shapes you can

make.

1. Include the necessary code to start up a Python screen. (Import the library and generate a screen.)

2. Create a new turtle variable using turtle.Turtle() .

3. Include two instances of a fillcolor , begin_fill , and end_fill .

4. Include two examples of for loops that uses range and my_counter .

5. Inside each for loop, have at least two commands for that turtle. Each for loop should include a unique turtle

variable.

6. Include at least 2 comments in the code.

Requirements:

Include the necessary code to start up a Python screen. (Import the library and generate a screen.)

Create a new turtle variable using turtle.Turtle() .

Include two examples of a fillcolor , begin_fill , and end_fill .

Include two examples of for loops that uses range and my_counter .

Inside each for loop, have at least two commands for that turtle.

Include at least 2 comments in the code.

Answer Keys & Solutions

Checkpoint Solutions

For Loops with Python Turtles

Questions

1. What is the purpose of a loop in programming?
MULTIPLE CHOICE

Correct Answer:

B. To repeat a set of instructions ✓ Correct

Explanation:

Loops allow a chunk of code to repeat.

2. In the given For Loop example, how many times will the turtle move forward
and turn left?

MULTIPLE CHOICE

Correct Answer:

A. 4 ✓ Correct

import turtle
turtle.getscreen()

for my_counter in range(6):
 turtle.forward(40)
 turtle.right(60)

1
2
3
4
5
6

A. To make code easier to read ✗ Incorrect

C. To speed up the program ✗ Incorrect

D. To slow down the program ✗ Incorrect

B. 5 ✗ Incorrect

C. 8 ✗ Incorrect

D. 2 ✗ Incorrect

Explanation:

What number is inside the range()?

3. Why is indentation important in Python, especially within a loop?

MULTIPLE CHOICE

Correct Answer:

C. It indicates what code is inside the For Loop ✓ Correct

Explanation:

Indentation allows you to know what code is to be repeated.

4. How many times will the following code run? (Notice that the code is NOT
indented)

MULTIPLE CHOICE

Correct Answer:

B. It will throw an error ✓ Correct

Explanation:

This code won't work because the indentation is incorrect.

5. What is the purpose of the "range()" function in the For Loop?
MULTIPLE CHOICE

Correct Answer:

A. It makes the code look neat and organized ✗ Incorrect

B. It helps the program run faster ✗ Incorrect

D. It requires less code overall ✗ Incorrect

A. 1 ✗ Incorrect

C. 2 ✗ Incorrect

D. 3 ✗ Incorrect

C. It determines the number of iterations for the loop ✓ Correct

Explanation:

The number in the parentheses of range() determines how many times the loop runs

6. What is the role of the variable "my_counter" in the For Loop?
MULTIPLE CHOICE

Correct Answer:

C. It represents a value that increases by 1 each time the loop runs ✓ Correct

Explanation:

The counter is counting how many times the loop runs

7. Debug the following code:
DEBUG CODE

Incorrect Code:

Correct Solution:

A. It defines the size of the turtle screen ✗ Incorrect

B. It sets the speed of the turtle ✗ Incorrect

D. It specifies the turtle's color ✗ Incorrect

A. It defines the number of sides in the square ✗ Incorrect

B. It controls the speed of the turtle ✗ Incorrect

D. It specifies the color of the turtle ✗ Incorrect

import turtle
turtle.getscreen()

for my_counter in range(4)
 turtle.forward(100)
 turtle.left(90)

1
2
3
4
5
6

import turtle
turtle.getscreen()

for my_counter in range(4):
 turtle.forward(100)
 turtle.left(90)

1
2
3
4
5
6

Explanation:

This code is missing a colon

8. Debug the following code:
DEBUG CODE

Incorrect Code:

Correct Solution:

Explanation:

This code is missing and underscore.

9. Debug the following code:
DEBUG CODE

Incorrect Code:

Correct Solution:

Explanation:

import turtle
turtle.getscreen()

for my counter in range(4):
 turtle.forward(100)
 turtle.left(90)

1
2
3
4
5
6

import turtle
turtle.getscreen()

for my_counter in range(4):
 turtle.forward(100)
 turtle.left(90)

1
2
3
4
5
6

import turtle
turtle.getscreen()

for my_counter in count(8):
 turtle.right(30)
 turtle.forward(20)

1
2
3
4
5
6

import turtle
turtle.getscreen()

for my_counter in range(8):
 turtle.right(30)
 turtle.forward(20)

1
2
3
4
5
6

The word count needs to be something else

10. Debug the following code:
DEBUG CODE

Incorrect Code:

Correct Solution:

Challenges

1. Star Continued

Solution:

2. Stop Sign

Solution:

import turtle
turtle.getscreen()

for my_counter in range(8):
 turtleright(30)
 turtle.forward(20)

1
2
3
4
5
6

import turtle
turtle.getscreen()

for my_counter in range(8):
 turtle.right(30)
 turtle.forward(20)

1
2
3
4
5
6

import turtle
turtle.getscreen()

for my_counter in range(5):
 turtle.forward(80)
 turtle.left(144)

1
2
3
4
5
6

import turtle
turtle.getscreen()

turtle.fillcolor("red")
turtle.begin_fill()

for my_counter in range(8):
 turtle.forward(40)
 turtle.right(45)

1
2
3
4
5
6
7
8
9
10

3. 20 20 20 Flower

Solution:

4. Square Petals

Solution:

5. Stained Glass

Solution:

turtle.end_fill()11

import turtle
turtle.getscreen()

for my_counter in range(20):
 turtle.circle(20)
 turtle.right(20)

1
2
3
4
5
6
7

import turtle
turtle.getscreen()

turtle.fillcolor("indigo")
turtle.begin_fill()

for my_counter in range(8):
 turtle.forward(50)
 turtle.left(90)
 turtle.forward(10)
 turtle.left(90)
 turtle.forward(50)
 turtle.right(45)

turtle.end_fill()

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

import turtle
turtle.getscreen()

shane = turtle.Turtle()
shane.right(60)

#red background
shane.fillcolor("red")
shane.begin_fill()

for my_counter in range(12):
 shane.forward(20)
 shane.left(30)

shane.end_fill()

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

#yellow star
turtle.fillcolor("yellow")
turtle.begin_fill()

for my_counter in range(12):
 turtle.forward(75)
 turtle.left(150)

turtle.end_fill()

16
17
18
19
20
21
22
23
24
25

